在平面直角坐标系中,O为坐标原点,点A坐标为(1,0),以OA为边在第一象限内作等边△OAB,C为x轴正半轴上的一个动点(OC>1),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点.
(1)如图,当C点在x轴上运动时,设AC=x,请用x表示线段AD的长;
(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式.
(3)以线段BC为直径作圆,圆心为点F,
①当C点运动到何处时直线EF∥直线BO?此时⊙F和直线BO的位置关系如何?请说明理由.
②G为CD与⊙F的交点,H为直线DF上的一个动点,连结HG、HC,求HG+HC的最小值,并将此最小值用x表示.
计算:
如图1,正方形ABCD中,点H在BC上,连接DH交正方形对角线AC于点E,过点E作DH的垂线交线段AB、CD于点F、G。
(1)求证:
(2)判断DH、FG的数量关系,并说明理由;
(3)在图1中,延长FG与BC交于点P,连接DF、DP(如图2),试探究DF与DP的关系,并说明理由。
如图,已知一个边长分别为6、8、10的直角三角形,请设计出一个有一条边长为8的直角三角形,使这两个直角三角形能够拼成一个等腰三角形。
(1)画出4种不同拼法(周长不等)的等腰三角形;
(2)求出4种不同拼法的图形的等腰三角形的周长。
如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线于点F。
(1)找出图中与全等的三角形,并说明理由;
(2)猜想三条线段PC、PE、PF之间的比例关系,并说明理由。
课堂上对关于x的方程:的解进行合作探究时,甲同学发现,当m=0时,方程的两根都为1,当m>0时,方程有两个不相等的实数根;乙同学发现,无论m取什么正实数时方程的两根都不可能相等;丙同学发现无论m取什么正实数时方程的两根这和均为定值。
(1)请找一个m的值代入方程使方程的两个根为互不相等的整数,并求这两个根;
(2)请选择乙或丙同学的发现加以判断,并说明理由。