设各项均为正数的数列的前
项和为
,满足
且
恰好是等比数列
的前三项.
(Ⅰ)求数列、
的通项公式;
(Ⅱ)记数列的前
项和为
,若对任意的
,
恒成立,求实数
的取值范围.
如图,在四棱锥中,底面
是矩形,
平面
,
,
.以
的中点
为球心、
为直径的球面切
于点
.
(1)求证:PD⊥平面;
(2)求直线与平面
所成的角的正弦值;
(3)求点到平面
的距离.
如图,在正四面体中,
分别是棱
的中点.
(1)求证:四边形是平行四边形;
(2)求证:平面
;
(3)求证:平面
.
(1)焦点在x轴上的椭圆的一个顶点为A(2,0),其长轴长是短轴长的2倍,求椭圆的标准方程.
(2)已知双曲线的一条渐近线方程是,并经过点
,求此双曲线的标准方程.
在平面直角坐标系中,有三个点的坐标分别是.
(1)证明:A,B,C三点不共线;
(2)求过A,B的中点且与直线平行的直线方程;
(3)设过C且与AB所在的直线垂直的直线为,求
与两坐标轴围成的三角形的面积.
设直线与直线
交于
点.
(1)当直线过
点,且与直线
垂直时,求直线
的方程;
(2)当直线过
点,且坐标原点
到直线
的距离为
时,求直线
的方程.