游客
题文

在平面直角坐标系中,已知分别是椭圆的左、右焦点,椭圆与抛物线有一个公共的焦点,且过点.

(Ⅰ)求椭圆的方程;
(Ⅱ)设点是椭圆在第一象限上的任一点,连接,过点作斜率为的直线,使得与椭圆有且只有一个公共点,设直线的斜率分别为,,试证明为定值,并求出这个定值;
(III)在第(Ⅱ)问的条件下,作,设于点
证明:当点在椭圆上移动时,点在某定直线上.

科目 数学   题型 解答题   难度 较难
知识点: 参数方程
登录免费查看答案和解析
相关试题

甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.
(1)求甲获得这次比赛胜利的概率;
(2)求经过5局比赛,比赛结束的概率

某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是,每次测试时间间隔恰当,每次测试通过与否互相独立.
(1)求该学生考上大学的概率;
(2)求该学生经过4次测试考上大学的概率.

设M点的坐标为(x,y).
(1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中取随机取一个数作为y,求M点落在y轴的概率;
(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:
,所表示的平面区域内的概率

投掷一个质地均匀的、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面标的数字是0,两个面标的数字是2,两个面标的数字是4,将此玩具连续抛掷两次,以两次朝上一面的数字分别作为点P的横坐标和纵坐标.
(1)求点P落在区域C:x2+y2≤10内的概率;
(2)若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机散一粒豆子,求豆子落在区域M上的概率.

设an=1+q+q2+…+qn1,An=Ca1+Ca2+…+Can.
(1)用q和n表示An
(2)又设b1+b2+…+bn=.求证:数列是等比数列.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号