在平面直角坐标系中,已知分别是椭圆的左、右焦点,椭圆与抛物线有一个公共的焦点,且过点.(Ⅰ)求椭圆的方程;(Ⅱ)设点是椭圆在第一象限上的任一点,连接,过点作斜率为的直线,使得与椭圆有且只有一个公共点,设直线的斜率分别为,,试证明为定值,并求出这个定值;(III)在第(Ⅱ)问的条件下,作,设交于点,证明:当点在椭圆上移动时,点在某定直线上.
在△ABC中,BC=a,AC=b,a,b是方程的两个根,且.求:(1)角C的度数;(2)AB的长度.
在△ABC中,如果,且为锐角,试判断此三角形的形状.
在△ABC中,若a=7,b=8,cosC=,求最大角的余弦值.
在锐角△ABC中,a,b,c分别为角A,B,C所对的边,又c=,b=4,且BC边上的高h=2. (1)求角C; (2)求边a的长
袋中有除颜色外完全相同的红、黄、白三种颜色的球各一个,从中每次任取1个.有放回地抽取3次,求: (1)3个全是红球的概率; (2)3个颜色全相同的概率; (3)3个颜色不全相同的概率; (4)3个颜色全不相同的概率.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号