已知椭圆C:
的一个焦点是(1,0),两个焦点与短轴的一个端点构成等边三角形.
(1)求椭圆C的方程;
(2)过点Q(4,0)且不与坐标轴垂直的直线l交椭圆C于A、B两点,设点A关于x轴的
对称点为A1.求证:直线A1B过x轴上一定点,并求出此定点坐标.
(本小题满分12分)已知数列
(1)证明数列
为等差数列,并求
的通项公式;
(2)设
,求数列
的前
项和。
(本小题满分12分)
在四棱锥P—ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2。
(Ⅰ)求证:BE∥平面PAD;
(Ⅱ)求证:BC⊥平面PBD;
(Ⅲ)设Q为侧棱PC上一点,
试确定
的值,使得二面角Q—BD—P为45°。
(本小题满分12分)某单位举办2010年上海世博会知识宣传活动,进行现场抽奖,盒中装有9张大小相同的精美卡片,卡片上分别印有“世博会会徽”或“海宝”(世博会吉祥物)图案;抽奖规则是:参加者从盒中抽取卡片两张,若抽到两张都是“海宝”卡即可获奖,否
则,均为不获奖。卡片用后入回盒子,下一位参加者继续重复进行。
(Ⅰ)活动开始后,一位参加者问:盒中有几张“海宝”卡?主持人答:我只知道,从盒中抽取两张都是“世博会会徽”卡的概率是
,求抽奖者获奖的概率;
(Ⅱ)现有甲乙丙丁四人依次抽奖,用
表示获奖的人数,求
的分布列及
的值。
(本小题满分10分)在
中,
分别为角A、B、C的对边,且满足
(Ⅰ)求角A的值;
(Ⅱ)若
的最大值。
(本小题满分14分)
设
为实数,函数
(Ⅰ)讨论
的奇偶性;
(Ⅱ)求
在
上的最小值.
(Ⅲ)求
在
上的最小值.