为了参加2013年市级高中篮球比赛,该市的某区决定从四所高中学校选出人组成男子篮球队代表所在区参赛,队员来源人数如下表:
学校 |
学校甲 |
学校乙 |
学校丙 |
学校丁 |
人数 |
![]() |
![]() |
![]() |
![]() |
该区篮球队经过奋力拼搏获得冠军,现要从中选出两名队员代表冠军队发言.
(Ⅰ)求这两名队员来自同一学校的概率;
(Ⅱ)设选出的两名队员中来自学校甲的人数为,求随机变量
的分布列及数学期望
.
在△ABC中,a, b, c分别为内角A, B, C的对边,且满足
2asinA=(2b+c)sinB+(2c+b)sinC
(Ⅰ)求A的大小;
(Ⅱ)求的最大值.
已知数列是等差数列,其前n项和为
,
,
(1)求数列的通项公式;
(2)设p、q是正整数,且p≠q.证明:.
已知二次函数f(x)=
(1)若f(0)>0,求实数p的取值范围
(2)在区间[-1,1]内至少存在一个实数c,使f(c)>0,求实数p的取值范围。
直线经过点P(-5,-4),且与两坐标轴围成的三角形面积为5,求直线
的方程。
已知为坐标原点,点
分别在
轴
轴上运动,且
=8,动点
满足
=
,设点
的轨迹为曲线
,定点为
直线
交曲线
于另外一点
.
(1)求曲线的方程;
(2)求面积的最大值.