某跨国饮料公司对全世界所有人均GDP(即人均纯收入)在0.5—8千美元的地区销售,该公司M饮料的销售情况的调查中发现:人均GDP处在中等的地区对该饮料的销售量最多,然后向两边递减.
(1)下列几个模拟函数中(x表示人均GDP,单位:千美元;y表示年人均M饮料的销量,单位:升),用哪个来描述人均,饮料销量与地区的人均GDP的关系更合适?说明理由.
A.![]() |
B.![]() |
C.![]() |
D.![]() |
(2)若人均GDP为1千美元时,年人均M饮料的销量为2升;人均GDP为4千美元时,年人均M饮料的销量为5升;把你所选的模拟函数求出来.;
(3)因为M饮料在N国被检测出杀虫剂的含量超标,受此事件影响,M饮料在人均GDP不高于3千美元的地区销量下降5%,不低于6千美元的地区销量下降5%,其他地区的销量下降10%,根据(2)所求出的模拟函数,求在各个地区中,年人均M饮料的销量最多为多少?
已知角A,B,C是△ABC三边a,b,c所对的角,,
,
,且
.
(I)若△ABC的面积S=,求b+c的值;
(II)求b+c的取值范围.
已知在等差数列{}中,
=3,前7项和
=28。
(I)求数列{}的公差d;
(II)若数列{}为等比数列,且
,
求数列
}的前n项和
.
已知椭圆C的中心在坐标原点,焦点在x轴上,左、右焦点分别为F1,F2,且|F1F2|=2,点P(1,)在椭圆C上.
(I)求椭圆C的方程;
(II)如图,动直线:
与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且
,
,四边形
面积S的求最大值.
已知函数.
(I)求f(x)的单调区间及极值;
(II)若关于x的不等式恒成立,求实数a的集合.
生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:
测试指标 |
[70,76) |
[76,82) |
[82,88) |
[88,94) |
[94,100] |
元件A |
8 |
12 |
40 |
32 |
8 |
元件B |
7 |
18 |
40 |
29 |
6 |
(Ⅰ)试分别估计元件A,元件B为正品的概率;
(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,
(ⅰ)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望;
(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.