游客
题文

注:此题选A题考生做①②小题,选B题考生做①③小题.
已知函数是定义在R上的奇函数,且当时有.
①求的解析式;②(选A题考生做)求的值域;
③(选B题考生做)若,求的取值范围.

科目 数学   题型 解答题   难度 中等
知识点: 函数的基本性质 高阶矩阵与特征向量
登录免费查看答案和解析
相关试题

设函数.
(I)若曲线与曲线在它们的交点处具有公共切线,求的值;
(II)当时,若函数在区间内恰有两个零点,求的取值范围;
(III)当时,求函数在区间上的最大值

如图,已知椭圆=1(a>b>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1、F2为顶点的三角形的周长为4(+1),一等轴双曲线的顶点是该椭圆的焦点,设P为该双曲线上异于顶点的任一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D.

(1)求椭圆和双曲线的标准方程;
(2)设直线PF1、PF2的斜率分别为k1、k2,证明:k1·k2=1;
(3)是否存在常数λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,请说明理由.

设函数,且以为最小正周期.
(1)求
(2)求的解析式;
(3)已知,求的值.

已知圆C与两坐标轴都相切,圆心C到直线的距离等于.
(1)求圆C的方程.
(2)若直线与圆C相切,求的最小值.

在锐角△中,分别为角所对的边,且
(1)确定角的大小;
(2)若,且△的面积为,求的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号