已知函数.
(Ⅰ)求不等式的解集;
(Ⅱ)若关于的不等式
恒成立,求实数
的取值范围.
(本小题满分14分)
已知点C(1,0),点A、B是⊙O:上任意两个不同的点,且满足
,设P为弦AB的中点.
(1)求点P的轨迹T的方程;
(2)试探究在轨迹T上是否存在这样的点:它到直线的距离恰好等于到点C的距离?若存在,求出这样的点的坐标;若不存在,说明理由.
(本小题满分14分)
如图,四边形为矩形,且
,
,
为
上的动点.
(1) 当为
的中点时,求证:
;
(2) 设,在线段
上存在这样的点E,使得二面角
的平面角大小为
. 试确定点E的位置.
(本小题满分12分)
一个口袋中装有大小相同的2个白球和3个黑球.
(1)采取放回抽样方式,从中摸出两个球,求两球恰好颜色不同的概率;
(2)采取不放回抽样方式,从中摸出两个球,求摸得白球的个数的分布列与期望。
(本小题满分分)
设三角形的内角
的对边分别为
,
.
(1)求边的长;
(2)求角的大小;
(3)求三角形的面积
。
(本小题满分12分)已知二次函数的
图象以原点为顶点且过点(1,1),反比例函数
的图象与直线
的两个交点间的距离为8,
(1)求函数的表达式;
(2)证明:当时,关于
的方程
有三个实数解.