为了解某班关注NBA是否与性别有关,对本班48人进行了问卷调查得到如下的列联表:
|
关注NBA |
不关注NBA |
合计 |
男生 |
|
6 |
|
女生 |
10 |
|
|
合计 |
|
|
48 |
已知在全班48人中随机抽取1人,抽到关注NBA的学生的概率为.
(1)请将上面的表补充完整(不用写计算过程),并判断是否有95%的把握认为关注NBA与性别有关?说明你的理由.
(2)现记不关注NBA的6名男生中某两人为a,b,关注NBA的10名女生中某3人为c,d,e,从这5人中选取2人进行调查,求:至少有一人不关注NBA的被选取的概率。
下面的临界值表,供参考
P(K2≥k) |
0.10 |
0.05 |
0.010 |
0.005 |
K |
2.706 |
3.841 |
60635 |
7.879 |
(参考公式:)其中n=a+b+c+d
如图,三棱锥中,
底面
,
,
,点
、
分别是
、
的中点.
(1)求证:⊥平面
;(2)求二面角
的余弦值。
二面角α-a-β的值为θ(0°<θ<180°),直线l⊥α,判断直线l与平面β的位置关系,并证明你的结论.
正方体ABCD-A1B1C1D1中,E、F分别是BB1,CC1的中点,求异面直线AE和BF所成
角的大小.
如图,△ABC和△DBC所在的两个平面互相垂直,且AB=BC=BD,∠ABC=∠DBC=120°,求
(1) A、D连线和直线BC所成角的大小;
(2) 二面角A-BD-C的大小
已知平面α⊥平面β,交线为AB,C∈,D∈
,
,E为BC的中点,AC⊥BD,BD=8.
①求证:BD⊥平面;
②求证:平面AED⊥平面BCD;
③求二面角B-AC-D的正切值.