已知函数
.
(Ⅰ)若曲线
在点
处的切线平行于
轴,求函数
的单调区间;
(Ⅱ)试确定
的取值范围,使得曲线
上存在唯一的点
,曲线在该点处的切线与曲线只有一个公共点
.
如图,椭圆
:
的左焦点为
,右焦点为
,离心率
。过
的直线交椭圆于
两点,且
的周长为8
(Ⅰ)求椭圆
的方程。
(Ⅱ)设动直线
:
与椭圆
有且只有一个公共点
,且与直线
相较于点
。试探究:在坐标平面内是否存在定点
,使得以
为直径的圆恒过点
?若存在,求出点
的坐标;若不存在,说明理由
如图,在长方体 中 , 为 中点.
(Ⅰ)求证:
;
(Ⅱ)在棱
上是否存在一点
,使得
平面
?若存在,求
的长;若不存在,说明理由.
(Ⅲ)若二面角
的大小为
,求
的长.
某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数。
(1)
(2)
(3)
(4)
(5)
(Ⅰ)试从上述五个式子中选择一个,求出这个常数.
(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广位三角恒等式,并证明你的结论.
受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中随机抽取50辆,统计书数据如下:
品牌 | 甲 | 乙 | |||
首次出现故障时间 (年) | |||||
轿车数量(辆) | 2 | 3 | 45 | 5 | 45 |
每辆利润(万元) | 1 | 2 | 3 | 1.8 | 2.9 |
将频率视为概率,解答下列问题:
(I)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;
(II)若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为
,生产一辆乙品牌轿车的利润为
,分别求
,
的分布列;
(III)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由