游客
题文

已知动直线与椭圆交于两不同点,且△的面积=,其中为坐标原点.
(1)证明均为定值;
(2)设线段的中点为,求的最大值;
(3)椭圆上是否存在点,使得?若存在,判断△的形状;若不存在,请说明理由.

科目 数学   题型 解答题   难度 困难
登录免费查看答案和解析
相关试题

(本小题满分12分)已知函数.
(Ⅰ)时,证明:
(Ⅱ),若,求a的取值范围.

已知抛物线的焦点为F,点P是抛物线上的一点,且其纵坐标为4,.
(1)求抛物线的方程;
(2)设点)是抛物线上的两点,∠APB的角平分线与x轴垂直,求△PAB的面积最大时直线AB的方程.

(本小题满分14分)已知各项不为零的数列的前项和为,且满足.
(1)求数列的通项公式;
(2)设数列满足,求数列的前项和.

【原创】(本小题满分14分)据报道,中国经济虽然有所下滑,但仍处于可控状态,从中央到地方对中国经济都抱有信心,因此股市的上证指数从去年的低点1974.38,涨到今天3286.07,为了了解股民的收益状况,某证券公司随机抽取位股民目前的战绩情况,数据显示这些股民的收益目前在所有股民中所占的百分数据,用茎叶图形式表示如下:

根据百分数据,成绩不低于80的为市场赢家.
(1)将频率视为概率,根据样本估计总体的思想,在股民中任选人,求至少有人为“市场赢家”的概率;
(2)从抽取的人中随机选取人,记表示“市场赢家”人数,求的分布列及期望.

(本小题满分12分)如图,四棱锥的底面是正方形,平面,点上的点,且

(1)求证:对任意的,都有
(2)若二面角的大小为,求实数的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号