某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点为圆心的两个同心圆弧和延长后通过点
的两条直线段围成.按设计要求扇环面的周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为
米,圆心角为
(弧度).
(1)求关于
的函数关系式;
(2)已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,求
关于
的函数关系式,并求出
为何值时,
取得最大值?
(本小题满分14分)一袋子中有大小、质量均相同的10个小球,其中标记“开”字的小球有5个,标记“心”字的小球有3个,标记“乐”字的小球有2个.从中任意摸出1个球确定标记后放回袋中,再从中任取1个球.不断重复以上操作,最多取3次,并规定若取出“乐”字球,则停止摸球.求:
(Ⅰ)恰好摸到2个“心”字球的概率;
(Ⅱ)摸球次数的概率分布列和数学期望.
(本题满分14分) 在△ABC中, 角A, B, C所对的边分别为a, b, c, 且满足.
(Ⅰ) 求的值;
(Ⅱ) 若△ABC的面积是, 求
的值.
(本小题满分12分)
某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:
其中是仪器的月产量.
(1)将利润表示为月产量的函数;
(2)当月产量为何值时,公司所获得利润最大?最大利润是多少?
(本小题满分14分)
已知函数且
,
(1)求的值;
(2)判定的奇偶性;
(3)判断在
上的单调性,并给予证明.
(本小题满分12分)
(1)已知函数,且对任意的实数x都有
成立,求实数a的值;
(2)已知定义在(-1,1)上的函数是减函数,且
,求a的取值范围。