为了让学生了解更多“奥运会”知识,某中学举行了一次“奥运知识竞赛”,共有800名学生参加了这次竞赛. 为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表,解答下列问题:
分组 |
频数 |
频率 |
60.5~70.5 |
|
0.16 |
70.5~80.5 |
10 |
|
80.5~90.5 |
18 |
0.36 |
90.5~100.5 |
|
|
合计 |
50 |
|
(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…799, 试写出第二组第一位学生的编号;
(2)填充频率分布表的空格(将答案直接填在表格内) ,并作出频率分布直方图;
(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的约多少人?
(本题12分)现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为,命中得
分,没有命中得
分;向乙靶射击两次,每次命中的概率为
,每命中一次得
分,没有命中得
分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分
的分布列及数学期望
.
(本题12分)某位收藏爱好者鉴定一件物品时,将正品错误地鉴定为赝品的概率为,将赝品错误地鉴定为正品的概率为
,已知一批物品共有4件,其中正品3件,赝品1件.(1)求该收藏爱好者的鉴定结果为正品2件,赝品2件的概率;(2)求该收藏爱好者的鉴定结果中正品数
的分布列及数学期望.
(本题12分)为了研究化肥对小麦产量的影响,某科学家将一片土地划分成200个的小块,并在100个小块上施用新化肥,留下100个条件大体相当的小块不施用新化肥.下表1和表2分别是施用新化肥和不施用新化肥的小麦产量频数分布表(小麦产量单位:kg)
表1:施用新化肥小麦产量频数分布表
小麦产量 |
![]() |
![]() |
![]() |
![]() |
![]() |
频数 |
10 |
35 |
40 |
10 |
5 |
表2:不施用新化肥小麦产量频数分布表
小麦产量 |
![]() |
![]() |
![]() |
![]() |
频数 |
15 |
50 |
30 |
5 |
(10)完成下面频率分布直方图;
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计施用化肥和不施用化肥的一小块土地的小麦平均产量;
(3)完成下面2×2列联表,并回答能否有99.5%的把握认为“施用新化肥和不施用新化肥的小麦产量有差异”
表3:
小麦产量小于20kg |
小麦产量不小于20kg |
合计 |
|
施用新化肥 |
![]() |
![]() |
|
不施用新化肥 |
![]() |
![]() |
|
合计 |
![]() |
附:
![]() |
0.050 |
0.010 |
0.005 |
0.001 |
![]() |
3.841 |
6.635 |
7.879 |
10.828 |
(本题12分)某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据
x |
6 |
8 |
10 |
12 |
y |
2 |
3 |
5 |
6 |
(1)请画出上表数据的散点图;(2)请根据上表提供的数据,求出y关于x的线性回归方程;(3)试根据(2)求出的线性回归方程,预测记忆力为9的同学的判断力.(相关公式:
,
)
(本题12分)已知在的展开式中,第
项的二项式系数与第2项的二项式系数的比为
.(1)求
的值;(2)求含
的项的系数;(3)求展开式中系数最大的项.