已知抛物线的顶点在坐标原点
,对称轴为
轴,焦点为
,抛物线上一点
的横坐标为2,且
.
(1)求抛物线的方程;
(2)过点作直线
交抛物线于
,
两点,求证:
.
如图,在△中,
是
的中点,
是
的中点,
的延长线交
于
.
(Ⅰ)求的值;
(Ⅱ)若△的面积为
, 四边形
的面积为
,求
的值.
已知函数(常数
).
(Ⅰ)求的单调区间;
(Ⅱ)设如果对于
的图象上两点
,存在
,使得
的图象在
处的切线
∥
,求证:
.
已知分别为椭圆
的上下焦点,其中
也是抛物线
的焦点,点
是
与
在第二象限的交点,且
.
(1)求椭圆的方程;
(2)已知点和圆
,过点
的动直线
与圆
相交于不同的两
点,在线段
上取一点
,满足
且
.
求证:点总在某定直线上.
如图,在三棱拄中,
侧面
,已知
(1)求证:;
(2)、当为
的中点时,求二面角
的平面角的正切值.
某校的学生记者团由理科组和文科组构成,具体数据如下表所示:
组别 |
理科 |
文科 |
||
性别 |
男生 |
女生 |
男生 |
女生 |
人数 |
4 |
4 |
3 |
1 |
学校准备从中选出4人到社区举行的大型公益活动进行采访,每选出一名男生,给其所在小组记1分,每选出一名女生则给其所在小组记2分,若要求被选出的4人中理科组、文科组的学生都有.(Ⅰ)求理科组恰好记4分的概率?
(Ⅱ)设文科男生被选出的人数为,求随机变量
的分布列和数学期望
.