已知函数,
.
(1)若函数在
处取得极值,求实数
的值;
(2)若,求函数
在区间
上的最大值和最小值.
(本小题满分14分)已知函数对于任意
都有
且当
时,有
。
(1)判断的奇偶性与单调性,并证明你的结论;
(2)设不等式对于一切
恒成立,求整数
的最小值。
(本小题满分14分)如图所示,某市政府决定在以政府大楼O为中心、正北方向
和正东方向的马路为边界的扇形地域内建造一个图书馆.为了充分利用这块土地,并考
虑与周边环境协调,设计要求该图书馆底面矩形的四个顶点都要在边界上,图书馆的正
面要朝市政府大楼.设扇形的半径OM=R ,,OB与OM之间的夹角为
.
(1)将图书馆底面矩形ABCD的面积S表示成的函数.
(2)若 R=45 m,求当为何值时,矩形ABCD的面积S有最大值?
其最大值是多少?
(本小题满分14分)在直三棱柱ABC—A1B1C1中,∠ACB=90°,AC=BC=AA1=1,D、E分别为棱AB、BC的中点,M为棱AA1上的点。
(1)证明:A1B1⊥C1D;
(2)当的大小。
本小题满分14分)已知等差数列的前
项和为
,且
,
。
(1)求数列的通项公式;
(2)若数列满足
,求数列
的前
项和
(本小题满分12分)在中,
,
,
是角
,
,
的对边,若
,且
,(1)求
的面积;(2)若
,求
和
的值.