游客
题文

近年深圳进行高中招生制度改革,某初中学校获得保送(指标生)名额若干,现在九年级四位品学兼优的学生小斌(男)、小亮(男)、小红(女)、小丽(女)都获得保送资格,且机会均等。
(1)、若学校只有一个名额,则随机选到小斌的概率是______________。
(2)、若学校争取到两个名额,请有树状图或列表法求随机选到保送的学生恰好是一男一女的概率。

科目 数学   题型 解答题   难度 较易
知识点: 利用频率估计概率
登录免费查看答案和解析
相关试题

解方程:

如图①,在平面直角坐标系中,等腰直角△AOB的斜边OB在x轴上,顶点A的坐标为(3,3),AD为斜边上的高.抛物线y=ax2+2x与直线y=x交于点O、C,点C的横坐标为6.点P在x轴的正半轴上,过点P作PE∥y轴,交射线OA于点E.设点P的横坐标为m,以A、B、D、E为顶点的四边形的面积为S.
求OA所在直线的解析式.
求a的值.
当m≠3时,求S与m的函数关系式
如图②,设直线PE交射线OC于点R,交抛物线于点Q.以RQ为一边,在RQ的右侧作矩形RQMN,其中RN=.直接写出矩形RQMN与△AOB重叠部分为轴对称图形时m的取值范围.

情境观察将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点D、A(A′)、B在同一条直线上,如图2所示.观察图2可知:与BC相等的线段是,∠CAC′=°.

问题探究如图3,△ABC中,AG⊥BC于点G,以A为直角顶点,分别以AB、AC为直角边,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,过点E、F作射线GA的垂线,垂足分别为P、Q. 试探究EP与FQ之间的数量关系,并证明你的结论.

拓展延伸如图4,△ABC中,AG⊥BC于点G,分别以AB、AC为一边向△ABC外作矩形ABME和矩形ACNF,射线GA交EF于点H. 若AB=" k" AE,AC=" k" AF,试探究HE与HF之间的数量关系,并说明理由

某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整理参赛同学的成绩,并制作成图表如下:

分数段
频数
频率
60≤x<70
30
0.15
70≤x<80
m
0.45
80≤x<90
60
n
90≤x<100
20
0.1


请根据以上图表提供的信息,解答下列问题
表中所表示的数分别为:
请在图2中,补全频数分布直方图;
比赛成绩的中位数落在哪个分数段?
如果比赛成绩80分以上(含80分)可以获得奖励,那么获奖率是多少

如图,某县城A距东西走向的一条铁路(图中DE)10km,县政府为改善城市人居环境,决定将城内一化工厂迁至距县城50km,方位为它的北偏东53o的B处(新厂址)。
求搬迁后的化工厂到铁路的距离;
为方便县城居民和搬迁后化工厂货物运输,决定新修一个火车站C和一条连接县城、火车站、化工厂的公路,问火车站C修在直线DE的什么地方,使所修公路最短?并在图中作出点C的位置(保留作图痕迹,不要求写作法和证明)。(参考数据:sin53o≈0.8, cos53o≈0.6, sin37o≈0.6, cos37o≈0.8)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号