从某校高二年级名男生中随机抽取
名学生测量其身高,据测量被测学生的身高全部在
到
之间.将测量结果按如下方式分成
组:第一组
,第二组
, ,第八组
,如下右图是按上述分组得到的频率分布直方图的一部分.已知第一组与第八组的人数相同,第六组、第七组和第八组的人数依次成等差数列.
频率分布表如下:
分组 |
频数 |
频率 |
频率/组距 |
|
|
|
|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
|
|
|
频率分布直方图如下:
(1)求频率分布表中所标字母的值,并补充完成频率分布直方图;
(2)若从身高属于第六组和第八组的所有男生中随机抽取名男生,记他们的身高分别为
,求满足:
的事件的概率.
已知函数,记数列
的前
项和为
,
,当
时,
(1)计算、
、
、
;
(2)猜想的通项公式,并证明你的结论;
(3)求证:…
在平面直角坐标系中,经过点
且斜率为
的直线
与椭圆
有两个不同的交点
。
(1)求实数的取值范围;
(2)设椭圆与轴正半轴,
轴正半轴的交点分别为
,是否存在常数
,使得向量
共线?如果存在,求
的值;如果不存在,请说明理由。
若,且
为负实数,求复数
.
(本小题满分13分)
已知数列满足:
,
(I)求得值;
(II)设,试求数列
的通项公式;
(III)对任意的正整数,试讨论
与
的大小关系。
(本小题满分13分)
已知椭圆C的对称中心为原点O,焦点在轴上,左右焦点分别为
,且
=2点
在该椭圆上。
(I)求椭圆C的方程;
(II)过的直线
与椭圆C相交于A,B两点,若
的面积为
,求以
为圆心且与直线
相切的圆的方程。