游客
题文

从某校高二年级名男生中随机抽取名学生测量其身高,据测量被测学生的身高全部在之间.将测量结果按如下方式分成组:第一组,第二组, ,第八组,如下右图是按上述分组得到的频率分布直方图的一部分.已知第一组与第八组的人数相同,第六组、第七组和第八组的人数依次成等差数列.
频率分布表如下:

分组
频数
频率
频率/组距
 
 
 
 








 
 
 
 

频率分布直方图如下:

(1)求频率分布表中所标字母的值,并补充完成频率分布直方图;
(2)若从身高属于第六组和第八组的所有男生中随机抽取名男生,记他们的身高分别为,求满足:的事件的概率.

科目 数学   题型 解答题   难度 较易
知识点: 误差估计
登录免费查看答案和解析
相关试题

(本题14分)已知点(1,)是函数)的图象上一点,等比数列的前项和为,数列的首项为,且前项和满足=+).
(1)求数列的通项公式;
(2)若数列{项和为,问的最小正整数是多少? .

(本题14分)如图,在四棱锥中,底面是边长为1的菱形,, , ,的中点,的中点.
(Ⅰ)证明:
(Ⅱ)求异面直线所成角的大小;
(Ⅲ)求点到平面的距离.

(本题14分)某营养师要为某个儿童预定午餐和晚餐。已知一个单位的午餐含12个单位的碳水化合物、6个单位的蛋白质和6个单位的维生素C;一个单位的晚餐含8个单位的碳水化合物、6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预定多少个单位的午餐和晚餐?

若(本题12分)在△ABC中,,, 分别为内角A, B, C的对边,且

(Ⅰ)求A的大小;(Ⅱ)求的最大值.

本题12分)已知,命题P:函数在区间上为减函数;命题Q:曲线轴相交于不同的两点.若“”为真,“”为假,求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号