阅读下面的材料:
小明遇到一个问题:如图(1),在□ABCD中,点E是边BC的中点,点F是线段AE上一点,BF的延长线交射线CD于点G.如果,求
的值.
他的做法是:过点E作EH∥AB交BG于点H,则可以得到△BAF∽△HEF.
请你回答:(1)AB和EH的数量关系为 ,CG和EH的数量关系为 ,的值为 .
(2)如图(2),在原题的其他条件不变的情况下,如果,那么
的值为 (用含a的代数式表示).
(3)请你参考小明的方法继续探究:如图(3),在四边形ABCD中,DC∥AB,点E是BC延长线上一点,AE和BD相交于点F. 如果,那么
的值为 (用含m,n的代数式表示).
如图,已知D是△ABC的边AC上的一点,且CD=2AD,AE⊥BC于E,若BC=13,△BDC的面积是39,求AE的长.
如图,在△ABC中,∠A=40°,∠B=72°,CD是AB边上的高;CE是∠ACB的平分线,DF⊥CE于F,求∠BCE和∠CDF的度数.
某开发区有一空地ABCD,如图所示,现计划在空地上种草皮,经测量,∠B=90°,AB=3m,BC=4m,AD=12m,CD=13m,若每种植1平方米草皮需要100元,问总共需要投入多少元?
在等边△ABC中,D是AC的中点,E是BC延长线上一点,且CE=CD,
(1)请说明DB=DE的理由.
(2)若等边△ABC的边长为4cm,求△BDE的面积.
如图,四边形ABCD中,AD∥BC,AC与BD相交于点O,
(1)△ABC与△DBC的面积相等吗?为什么?
(2)若S△AOB=21cm2,求S△COD;
(3)若S△AOD=10cm2,且BO:OD=2:1,求S△ABD.
(1)根据已知得出∴△ABC的边BC上的高和△DBC边BC上的高相等,设此高为h,根据三角形的面积公式求出即可;
(2)根据△ABC的面积和△DBC的面积相等,都减去△OBC的面积,即可得出△AOB的面积和△DOC的面积相等;
(3)求出BD=3OD,根据面积公式代入求出即可.
解:(1))△ABC与△DBC的面积相等,理由是:
∵AD∥BC,
∴△ABC的边BC上的高和△DBC边BC上的高相等,设此高为h,
∴△ABC的面积是BC×h,△DBC的面积是
×BC×h,
∵BC=BC,
∴△ABC与△DBC的面积相等;
(2)∵S△ABC=S△DBC,
∴S△ABC﹣S△OBC=S△DBC﹣S△OBC,
∴S△AOB=S△DOC=21cm2,
即S△COD=21cm2;
(3)∵BO:OD=2:1,
∴BD=3OD,
∵△AOD的边OD上的高和△ABD的边BD上的高相等,设此高为a,
∵S△AOD=×OD×a=10cm2,
∴S△ABD.=×BD×a=
×3OD×a=3×10cm2=30cm2.
【题目】
如图,AF是△ABC的高,AD是△ABC的角平分线,且∠B=38°,∠C=72°,求∠DAF的度数.