设椭圆C:=1(a>b>0)的离心率e=,右焦点到直线=1的距离d=,O为坐标原点.(1)求椭圆C的方程;(2)过点O作两条互相垂直的射线,与椭圆C分别交于A,B两点,证明,点O到直线AB的距离为定值,并求弦AB长度的最小值.
已知函数在上是增函数,求的取值范围。
记函数的定义域为,函数的定义域为. (1)求; (2)若,求实数的取值范围.
四边形的顶点.为坐标原点. (1)求的外接圆的方程; (2)过上的点作圆的切线,设与轴、轴的正半轴分别 交于点、,求面积的最小值.
如图所示,正方形与直角梯形所在平面互相垂直,,,. (Ⅰ)求证:平面; (Ⅱ)求证:平面; (Ⅲ)求四面体的体积.
(1) 直线:与直线:平行,求实数的值; (2)求过直线:与:的交点且垂直于直线:直线方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号