设无穷数列的首项
,前
项和为
(
),且点
在直线
上(
为与
无关的正实数).
(1)求证:数列(
)为等比数列;
(2)记数列的公比为
,数列
满足
,设
,求数列
的前
项和
;
(3)(理)若(1)中无穷等比数列(
)的各项和存在,记
,求函数
的值域.
数列{ a n}满足a 1+2 a 2+22 a 3+…+2n-1 a n=,(n∈N*)前n项和为Sn;数列{bn}是等差数列,且b1=2,其前n项和Tn满足
(
为常数,且
<1).
(1)求数列{ a n}的通项公式及的值;
(2)设,求数列
的前n项的和
;
(3)证明+
+
+ +
>
Sn.
已知函数(其中e是自然对数的底数,k为正数)
(1)若在
处取得极值,且
是
的一个零点,求k的值;
(2)若,求
在区间
上的最大值;
(3)设函数g(x)=f(x)-kx在区间上是减函数,求k的取值范围.
已知设函数f(x)=
的图像关于
对称,其中
,
为常数,且
∈
(1)求函数f(x)的最小正周期T;
(2)函数过求函数在
上取值范围。
在中,已知
.
(1)求证:tanB=3tanA
(2)若求A的值.
中,
分别为内角
的对边且,
(1)求的大小;
(2)若,试判断
的形状.