游客
题文

已知函数
(1)当时,求函数的极小值;
(2)当时,过坐标原点作曲线的切线,设切点为,求实数的值;
(3)设定义在上的函数在点处的切线方程为时,若内恒成立,则称为函数的“转点”.当时,试问函数是否存在“转点”.若存在,请求出“转点”的横坐标,若不存在,请说明理由.

科目 数学   题型 解答题   难度 较难
知识点: 组合几何
登录免费查看答案和解析
相关试题

直线AB经过⊙O上的点C,并且OA=OB,CA=CB.⊙O交直线OB于E,D,连接EC,CD.
(1)求证:直线AB是⊙O的切线;
(2)若tan∠CED=,⊙O的半径为3,求OA的长.

已知函数处取得极值.
(1)求的表达式;
(2)设函数.若对于任意的,总存在唯一的,使得,求实数的取值范围.

给定椭圆,称圆心在原点,半径为的圆是椭圆的“准圆”.若椭圆的一个焦点为,其短轴上的一个端点到的距离为.
(1)求椭圆的方程和其“准圆”方程;
(2)点是椭圆的“准圆”上的动点,过点作椭圆的切线交“准圆”于点.
(ⅰ)当点为“准圆”与轴正半轴的交点时,求直线的方程并证明
(ⅱ)求证:线段的长为定值.

生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种元件各100件进行检测,检测结果统计如下:

(1)试分别估计元件A、元件B为正品的概率;
(2)生产一件元件A,若是正品可盈利50元,若是次品则亏损10元;生产一件元件B,若是正品可盈利100元,若是次品则亏损20元,在(1)的前提下;
(1)求生产5件元件B所获得的利润不少于300元的概率;
(2)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望.

如图,在直三棱柱中,是棱上的一点,的延长线与的延长线的交点,且∥平面
(1)求证:
(2)求二面角的正弦值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号