如图,矩形ABCD中, cm,
cm,动点M从点D出发,按折线DCBAD方向以2 cm/s的速度运动,动点N从点D出发,按折线DABCD方向以1 cm/s的速度运动.
(1)若动点M、N同时出发,经过几秒钟两点相遇?
(2)若点E在线段BC上,且 cm,若动点M、N同时出发,相遇时停止运动,经过几秒钟,点A、E、M、N组成平行四边形?
解方程:
(1)
(2)
如图所示,在直角梯形ABCD中,AD//BC,∠A=90°,AB=12,BC=21,AD=16。动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动。设运动的时间为t(秒)。
(1)设△DPQ的面积为S,用含有t的代数式表示S。
(2)当t为何值时,四边形PCDQ是平行四边形?
已知三边
满足
,请你判断
的形状,并说明理由.
如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.
如图,在△ABC中,∠C=90°,∠B=30°,AD是BC边上的中线,若AB=8,求AD的长。