在直三棱柱中,AA1=AB=BC=3,AC=2,D是AC的中点.
(1)求证:B1C∥平面A1BD;
(2)求平面A1DB与平面DBB1夹角的余弦值.
(本小题满分10分)设.
(1)若数列的各项均为1,求证:
;
(2)若对任意大于等于2的正整数,都有
恒成立,试证明数列
是等差数列.
(本小题满分10分)如图,已知四棱锥的底面是菱形,对角线
交于点
,
,
,
,
底面
,设点
满足
.
(1)当时,求直线
与平面
所成角的正弦值;
(2)若二面角的大小为
,求
的值.
(选修4-5:不等式选讲)
已知为正实数,求证:
,并求等号成立的条件.
(选修4—4:坐标系与参数方程)
在极坐标系中,曲线的极坐标方程为
,以极点
为原点,极轴为
轴的正半轴建立平面直角坐标系,直线
的参数方程为
(
为参数),试判断直线
与曲线
的位置关系,并说明理由.
(选修4—2:矩阵与变换)
若矩阵属于特征值3的一个特征向量为
,求矩阵
的逆矩阵
.