如图,在△ABC中已知∠B=60°,,D是BC边上的一点.
(1)若AD=2,在△ACD的面积S=,求CD的长.
(2)若AB=AD,试求△ACD面积S的最大值.
选修:坐标系与参数方程
在平面直角坐标系中,直线
经过点
,其倾斜角是
,以原点
为极点,以
轴的非负半轴为极轴,与直角坐标系
取相同的长度单位,建立极坐标系.设曲线
的极坐标方程是
.
(Ⅰ)若直线和曲线
有公共点,求倾斜角
的取值范围;
(Ⅱ)设为曲线
任意一点,求
的取值范围.
选修:几何证明选讲
如图,过点作圆
的割线
与切线
,
为切点,连接
,
的平分线与
分别交于点
,其中
.
(Ⅰ)求证:;
(Ⅱ)求的大小.
若,其中
.
(Ⅰ)当时,求函数
在区间
上的最大值;
(Ⅱ)当时,若
恒成立,求
的取值范围.
已知椭圆的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
是椭圆
的右顶点与上顶点,直线
与椭圆相交于
两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)当四边形面积取最大值时,求
的值.
如图,在多面体中,
平面
,
,且
是边长为
的等边三角形,
,
与平面
所成角的正弦值为
.
(Ⅰ)若是线段
的中点,证明:
面
;
(Ⅱ)求二面角的平面角的余弦值.