游客
题文

如图,CD,EF表示高度不同的两座建筑物,已知CD高15米,小明站在A处,视线越过CD,能看到它后面的建筑物的顶端E,此时小明的视角∠FAE=45°,为了能看到建筑物EF上点M的位置,小明延直线FA由点A移动到点N的位置,此时小明的视角∠FNM=30°,求AN之间的距离.

科目 数学   题型 解答题   难度 中等
知识点: 解直角三角形
登录免费查看答案和解析
相关试题

如图,建筑物 C 在观测点 A 的北偏东 65 ° 方向上,从观测点 A 出发向南偏东 40 ° 方向走了 130 m 到达观测点 B ,此时测得建筑物 C 在观测点 B 的北偏东 20 ° 方向上,求观测点 B 与建筑物 C 之间的距离.(结果精确到 0 . 1 m .参考数据: 3 1 . 73 )

为增强学生环保意识,某中学举办了环保知识竞赛,某班共有5名学生 ( 3 名男生,2名女生)获奖.

(1)老师若从获奖的5名学生中选取一名作为班级的“环保小卫士”,则恰好是男生的概率为  

(2)老师若从获奖的5名学生中任选两名作为班级的“环保小卫士”,请用画树状图法或列表法,求出恰好是一名男生、一名女生的概率.

某校要了解学生每天的课外阅读时间情况,随机调查了部分学生,对学生每天的课外阅读时间 x (单位: min ) 进行分组整理,并绘制了如图所示的不完整的统计图表,根据图中提供的信息,解答下列问题:

(1)本次调查共抽取  名学生.

(2)统计表中 a =    b =   

(3)将频数分布直方图补充完整.

(4)若全校共有1200名学生,请估计阅读时间不少于 45 min 的有多少人.

课外阅读时间 x / min

频数 /

频率

0 x < 15

6

0.1

15 x < 30

12

0.2

30 x < 45

a

0.25

45 x < 60

18

b

60 x < 75

9

0.15

如图,四边形 ABCD 为平行四边形, BAD BCD 的平分线 AE CF 分别交 DC BA 的延长线于点 E F ,交边 BC AD 于点 H G

(1)求证:四边形 AECF 是平行四边形.

(2)若 AB = 5 BC = 8 ,求 AF + AG 的值.

在平面直角坐标系中,抛物线 y = a x 2 + bx + c 过点 A ( 1 , 0 ) B ( 3 , 0 ) ,与 y 轴交于点 C ,连接 AC BC ,将 ΔOBC 沿 BC 所在的直线翻折,得到 ΔDBC ,连接 OD

(1)用含 a 的代数式表示点 C 的坐标.

(2)如图1,若点 D 落在抛物线的对称轴上,且在 x 轴上方,求抛物线的解析式.

(3)设 ΔOBD 的面积为 S 1 ΔOAC 的面积为 S 2 ,若 S 1 S 2 = 2 3 ,求 a 的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号