2013年某市某区高考文科数学成绩抽样统计如下表:
(1)求出表中m、n、M、N的值,并根据表中所给数据在下面给出的坐标系中画出频率分布直方图;(纵坐标保留了小数点后四位小数)
(2)若2013年北京市高考文科考生共有20000人,试估计全市文科数学成绩在90分及90分以上的人数;
(3)香港某大学对内地进行自主招生,在参加面试的学生中,有7名学生数学成绩在140分以上,其中男生有4名,要从7名学生中录取2名学生,求其中恰有1名女生被录取的概率.
(1)若,且
,求向量
;
(2)若向量,当
为大于4的某个常数时,
取最大值4,求此时
与
夹
角的正切值
(1)求的取值范围;
(2)若,
,求
的值
(1)求的最小正周期和单调增区间;
(2)当时,函数
的最大值与最小值的和
,求
已知函数,当
时,
取到极大值2。
(1)用关于a的代数式分别表示b和c;
(2)当时,求
的极小值
(3)求的取值范围。
如图,四棱锥G—ABCD中,ABCD是正方形,且边长为2a,面ABCD⊥面ABG,AG=BG。
(1)画出四棱锥G—ABCD的三视图;
![]() |
(2)在四棱锥G—ABCD中,过点B作平面
AGC的垂线,若垂足H在CG上,
求证:面AGD⊥面BGC
(3)在(2)的条件下,求三棱锥D—ACG的体积
及其外接球的表面积。