己知椭圆C:(a>b>0)的右焦点为F(1,0),点A(2,0)在椭圆C上,过F点的直线与椭圆C交于不同两点.(1)求椭圆C的方程;(2)设直线斜率为1,求线段的长;(3)设线段的垂直平分线交轴于点P(0,y0),求的取值范围.
将下列各极坐标方程化为直角坐标方程. (1)θ=(ρ∈R). (2)ρcos2=1.
已知y=f(x)的图象(如图1)经A=作用后变换为曲线C(如图2). (1)求矩阵A. (2)求矩阵A的特征值.
已知2×2矩阵M=有特征值λ=-1及对应的一个特征向量e1=. (1)求矩阵M. (2)设曲线C在矩阵M的作用下得到的方程为x2+2y2=1,求曲线C的方程.
对任意实数x,矩阵总存在特征向量,求m的取值范围.
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为e1=和e2=. (1)求矩阵A. (2)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号