已知函数f(x)=(A>0,
>0,
)的图象的一部分如下图所示.
(1)求函数f(x)的解析式.
(2)当x(-6,2)时,求函数g(x)= f(x+2)的单调递增区间.
已知函数f(x)=+aln(x-1)(a∈R).
(Ⅰ)若f(x)在[2,+∞)上是增函数,求实数a的取值范围;
(Ⅱ)当a=2时,求证:1-<2ln(x-1)<2x-4(x>2);
(Ⅲ)求证:+
+…+
<lnn<1+
+ +
(n∈N*,且n≥2).
已知椭圆C:+
=1(a>b>0)的离心率为
,过右焦点F的直线l与C相交于A、B两点,当l的斜率为1时,坐标原点O到l的距离为
.
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在点P,使得当l绕F转到某一位置时,有=
+
成立?若存在,求出所有的P的坐标与l的方程;若不存在,说明理由.
现有A,B两球队进行友谊比赛,设A队在每局比赛中获胜的概率都是.
(Ⅰ)若比赛6局,求A队至多获胜4局的概率;
(Ⅱ)若采用“五局三胜”制,求比赛局数ξ的分布列和数学期望.
设公差不为0的等差数列{an}的首项为1,且a2,a5,a14构成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足+
+…+
=1-
,n∈N*,求{bn}的前n项和Tn.
如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.
(Ⅰ)证明:BC1∥平面A1CD;
(Ⅱ)求二面角D-A1C-E的正弦值.