游客
题文

设函数f(x)=axn(1-x)+b(x>0),n为正整数,ab为常数.曲线yf(x)在(1,f(1))处的切线方程为xy=1.
(1)求ab的值;
(2)求函数f(x)的最大值.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

已知函数
(1)讨论函数的单调性;
(2)若函数处取得极值,不等式对任意恒成立,求实数的取值范围;
(3)当时,证明不等式.

甲、乙两个工厂,甲厂位于一直线河岸的岸边处,乙厂与甲厂在河的同侧,乙厂位于离河岸40千米的处,乙厂到河岸的垂足相距50千米,两厂要在此岸边之间合建一个供水站,从供水站到甲厂和乙厂的水管费用分别为每千米3元和5元,若千米,设总的水管费用为元,如图所示,
(1)写出关于的函数表达式;
(2)问供水站建在岸边何处才能使水管费用最省?

已知函数,为自然对数的底数.
(I)求函数的极值;
(2)若方程有两个不同的实数根,试求实数的取值范围;

已知,证明:,并利用上述结论求的最小值(其中

设数列满足
(1)求
(2)由(1)猜想的一个通项公式,并用数学归纳法证明你的结论;(本题满分13分)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号