已知函数f(x)=(x-1)2,g(x)=4(x-1),数列{an}是各项均不为0的等差数列,其前n项和为Sn,点(an+1,S2n-1)在函数f(x)的图象上;数列{bn}满足b1=2,bn≠1,且(bn-bn+1)·g(bn)=f(bn)(n∈N+).
(1)求an并证明数列{bn-1}是等比数列;
(2)若数列{cn}满足cn=,证明:c1+c2+c3+…+cn<3.
(本小题满分10分)
已知的展开式中第五项的系数与第三项的系数之比是10︰1,求展开式中x的系数.
在四面体ABCD中,DA⊥面ABC,∠ABC=90°,AE⊥CD,AF⊥DB.求证:
(1)EF⊥DC; (2)平面DBC⊥平面AEF; (3)若AD=AB=a,AC=求二面角B-DC-A的正弦值。
本小题满分12分)如图,在四棱锥中,底面
四边长为1的菱形,
,
,
,
为
的中点,
为
的中点
(Ⅰ)证明:直线;
(Ⅱ)求异面直线AB与MD所成角的大小;
(Ⅲ)求点B到平面OCD的距离。
(本小题满分12分)用0、1、2、3、4、5这六个数字,可以组成多少个分别符合下列条件的无重复数字的四位数:
(1)奇数; (2)偶数; (3)大于3125的数.
(本小题满分16分)如图,正四棱锥P-ABCD中,O是底面正方形的中心,E是PC的中点,求证
(1)PA∥平面BDE
(2)平面PAC 平面BDE