如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点. (1)证明B1C1⊥CE;(2)求二面角B1-CE-C1的正弦值;(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.
已知=(2asin2x,a),=(-1,2sinxcosx+1),O为坐标原点,a≠0,设f(x)=·+b,b>a。 (1)若a>0,写出函数y=f(x)的单调递增区间; (2)若函数y=f(x)的定义域为[,π],值域为[2,5],求实数a与b的值。
已知函数。 (1)若,求函数的值; (2)求函数的值域。
已知向量,函数f(x)=,x∈[0,π]。 (1)求函数f(x)的最大值; (2)当函数f(x)取得最大值时,求向量与夹角的大小。
已知,,与的夹角为。求: (1); (2); (3)若在中,,求的面积。
已知均为锐角,求的值。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号