为了解某班学生喜爱打篮球是否与性别有关,对本班48人进行了问卷调查得到了如下的2×2列联表:
|
喜爱打篮球 |
不喜爱打篮球 |
合计 |
男生 |
|
6 |
|
女生 |
10 |
|
|
合计 |
|
|
48 |
已知在全班48人中随机抽取1人,抽到喜爱打篮球的学生的概率为.
(1)请将上面的2×2列联表补充完整(不用写计算过程);
(2)你是否有95%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为X,求X的分布列与数学期望.
下面的临界值表供参考:
P(χ2≥x0)或 P(K2≥k0) |
0.10 |
0.05 |
0.010 |
0.005 |
x0(或k0) |
2.706 |
3.841 |
6.635 |
7.879 |
(参考公式)χ2=,其中n=n11+n12+n21+n22或K2=
,其中n=a+b+c+d)
已知椭圆(a>b>0)的左焦为F,右顶点为A,上顶点为B,O为坐标原点,M为椭圆上任意一点,过F,B,A三点的圆的圆心为(p,q).
(1).当p+q≤0时,求椭圆的离心率的取值范围;
(2).若D(b+1,0),在(1)的条件下,当椭圆的离心率最小时,的最小值为
,求椭圆的方程.
如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB的中点,
(1).求证:D1E⊥A1D;
(2).在线段AB上是否存在点M,使二面角D1-MC-D的大小为?,若存在,求出AM的长,若不存在,说明理由
已知向量,设函数
.
(1).求函数f(x)的最小正周期;
(2).已知a,b,c分别为三角形ABC的内角对应的三边长,A为锐角,a=1,,且
恰是函数f(x)在
上的最大值,求A,b和三角形ABC的面积.
设等差数列的前n项和为
,且
,
(1).求数列的通项公式;
(2).若成等比数列,求正整数n的值.
已知角A、B、C为△ABC的三个内角,其对边分别为a、b、c,若,
,a=2
,且
·
=
.
(1)若△ABC的面积S=,求b+c的值.
(2)求b+c的取值范围.