已知直线l:y=x+,圆O:x2+y2=5,椭圆E:
=1(a>b>0)的离心率e=
,直线l被圆O截得的弦长与椭圆的短轴长相等.
(1)求椭圆E的方程;
(2)过圆O上任意一点P作椭圆E的两条切线,若切线都存在斜率,求证:两条切线的斜率之积为定值.
如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图中的侧(左)视图、俯视图,在直观图中,是
的中点,侧(左)视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(1)求出该几何体的体积;
(2)若是
的中点,求证:
∥平面
;
(3)求证:平面⊥平面
.
如图,在直角梯形中,
,
∥
,
,
为线段
的中点,将
沿
折起,使平面
⊥平面
,得到几何体
.
(1)若,
分别为线段
,
的中点,求证:
∥平面
;
(2)求证:⊥平面
;
(3)的值.
设函数f(x)=cos2ωx+sinωxcosωx+a(其中ω>0,a∈R),且f(x)的图象在y轴右侧的第一个最高点的横坐标为
.
(1)求ω的值;
(2)如果f(x)在区间上的最小值为
,求a的值.
已知向量m=(sinA,cosA),n=(,-1),m·n=1,且A为锐角.
(1)求角A的大小;
(2)求函数f(x)=cos2x+4cosAsinx(x∈R)的值域.
已知某海滨浴场的海浪高达y(米)是时间t(0≤t≤24,单位:小时)的函数,记作y=f(t).下表是某日各时的浪高数据.
t(时) |
0 |
3 |
6 |
9 |
12 |
15 |
18 |
21 |
24 |
y(米) |
1.5 |
1.0 |
0.5 |
1.0 |
1.5 |
1.0 |
0.5 |
0.99 |
1.5 |
经长期观测,y=f(t)的曲线可近似地看成是函数y=Acosωt+b.
(1)根据以上数据,求出函数y=Acosωt+b的最小正周期T、振幅A及函数表达式;
(2)依据规定,当海浪高度高于1米时才对冲浪爱好者开放,请依据(1)的结论,判断一天内的上午8:00至晚上20:00之间,有多长时间可供冲浪者进行运动?