设向量a=(2,sin θ),b=(1,cos θ),θ为锐角.
(1)若a·b=,求sin θ+cos θ的值;
(2)若a∥b,求sin的值.
(本小题满分12分)如图,在几何体中,
,
,
,且
,
.
(1)求证:;
(2)求二面角的余弦值.
(本小题满分12分)某牛奶厂要将一批牛奶用汽车从所在城市甲运至城市乙,已知从城市甲到城市乙只有两条公路,且运费由厂商承担.若厂商恰能在约定日期(×月×日)将牛奶送到,则城市乙的销售商一次性支付给牛奶厂20万元;若在约定日期前送到,每提前一天销售商将多支付给牛奶厂1万元;若在约定日期后送到,每迟到一天销售商将少支付给牛奶厂1万元.为保证牛奶新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送牛奶,已知下表内的信息:
统计信息 行驶路线 |
在不堵车的情况下到达城市乙所需时间(天) |
在堵车的情况下到达城市乙所需时间(天) |
堵车的概率 |
运费(万元) |
公路1 |
2 |
3 |
![]() |
1.6 |
公路2 |
1 |
4 |
![]() |
0.8 |
(1)记汽车选择公路1运送牛奶时牛奶厂获得的毛收入为(单位:万元),求
的分布列和数学期望
;
(2)如果你是牛奶厂的决策者,你选择哪条公路运送牛奶有可能让牛奶厂获得的毛收入更多?
(注:毛收入=销售商支付给牛奶厂的费用-运费)
(本小题满分12分)如图,在凸四边形中,
为定点,
,
为动点,满足
.
(1)写出与
的关系式;
(2)设和
的面积分别为
和
,求
的最大值.
(本小题满分10分)已知等差数列{},公差
,前n项和为
,
,且满足
成等比数列.
(1)求{}的通项公式;
(2)设,求数列
的前
项和
的值.
(本小题满分12分)已知椭圆(
)的离心率为
,右焦点到直线
的距离为
.
(1)求椭圆的方程;
(2)已知点,斜率为
的直线
交椭圆
于两个不同点
.
,设直线
与
的斜率分别为
,
,①若直线
过椭圆
的左顶点,求此时
,
的值;②试猜测
,
的关系,并给出你的证明.