如图所示,光滑水平直轨道上放置长木板B和滑块C,滑块A置于B的左端,且A、B间接触面粗糙,三者质量分别为mA =" 1" kg 、mB =" 2" kg、 mC =" 23" kg .开始时 A、B一起以速度v0 ="10" m/s向右运动,与静止的C发生碰撞,碰后C向右运动,又与竖直固定挡板碰撞,并以碰前速率弹回,此后B与C不再发生碰撞.已知B足够长,A、B、C最终速度相等.求B与C碰后瞬间B的速度大小.
如图所示,无限长金属导轨EF、PQ固定在倾角为θ=53°的光滑绝缘斜面上,轨道间距L="1" m,底部接入一阻值为R=0.4Ω的定值电阻,上端开口。垂直斜面向上的匀强磁场的磁感应强度B=2T。一质量为m=0.5kg的金属棒ab与导轨接触良好,ab与导轨间动摩擦因数μ=0.2,ab连入导轨间的电阻r=0.1Ω,电路中其余电阻不计。现用一质量为M=2.86kg的物体通过一不可伸长的轻质细绳绕过光滑的定滑轮与ab相连。由静止释放M,当M下落高度h="2.0" m时,ab开始匀速运动(运动中ab始终垂直导轨,并接触良好)。不计空气阻力,sin53°=0.8,cos53°=0.6,取g=10m/s2。求:
(1)ab棒沿斜面向上运动的最大速度vm;
(2)ab棒从开始运动到匀速运动的这段时间内电阻R上产生的焦耳热QR和流过电阻R的总电荷量q。
如图所示,在足够长的绝缘板MN上方距离为d的O点处,水平向左发射一个速率为v0,质量为、电荷为
的带正电的粒子(不考虑粒子重力)。
(1)若在绝缘板上方加一电场强度大小为、方向竖直向下的匀强电场,求带电粒子打到板上距P点的水平距离(已知
);
(2)若在绝缘板的上方只加一方向垂直纸面,磁感应强度的匀强磁场,求:①带电粒子在磁场中运动半径; ②若O点为粒子发射源,能够在纸面内向各个方向发射带电粒子(不考虑粒子间的相互作用),求发射出的粒子打到板上的最短时间。
如图甲所示,电阻不计,间距为的平行长金属导轨置于水平面内,阻值为
的导体棒
固定连接在导轨左端,另一阻值也为
的导体棒
垂直放置到导轨上,
与导轨接触良好,并可在导轨上无摩擦移动。现有一根轻杆一端固定在
中点,另一端固定于墙上,轻杆与导轨保持平行,
两棒间距为
。若整个装置处于方向竖直向下的匀强磁场中,且从某一时刻开始,磁感应强度
随时间
按图乙所示的方式变化。
(1)求在0~时间内流过导体棒
的电流的大小与方向;
(2)求在时间内导体棒
产生的热量;
(3)1.5时刻杆对导体棒
的作用力的大小和方向。
如图所示,足够大的荧光屏ON垂直xOy坐标面,与x轴夹角为30°,当y轴与ON间有沿+y方向、场强为E的匀强电场时,一质量为m、电荷量为-q的离子从y轴上的P点,以速度v0、沿+x轴方向射入电场,恰好垂直打到荧光屏上的M点(图中未标出).现撤去电场,在y轴与ON间加上垂直坐标面向里的匀强磁场,相同的离子仍以速度v0从y轴上的Q点沿+x轴方向射入磁场,恰好也垂直打到荧光屏上的M点,离子的重力不计.求:
(1)离子在电场中运动的时间t1;
(2)P点距O点的距离y1和离子在磁场中运动的加速度大小a;
(3)若相同的离子分别从y轴上的不同位置以速度(
,k为常数)、沿+x轴方向射入磁场,离子都能打到荧光屏上,k应满足的条件.
有一金属细棒ab,质量m=0.05kg,电阻不计,可在两条轨道上滑动,如图所示,轨道间距为L=0.5m,其平面与水平面的夹角为=37°,置于垂直于轨道平面向上的匀强磁场中,磁感应强度为B=1.0T,金属棒与轨道的动摩擦因数μ=0.5,(设最大静摩擦力与滑动摩擦力大小相等)回路中电源电动势为E=3V,内阻r=0.5Ω。 (g=10m/s2,sin37°=0.6,cos37°=0.8)求:
(1)为保证金属细棒不会沿斜面向上滑动,流过金属细棒ab的电流的最大值为多少?
(2)滑动变阻器R的阻值应调节在什么范围内,金属棒能静止在轨道上?