如图所示,两根足够长、电阻不计、间距为d的光滑平行金属导轨,其所在平面与水平面的夹角为θ,导轨平面内的矩形区域abcd内存在有界匀强磁场,磁感应强度大小为B,方向垂直于导轨平面向上,ab与cd之间相距为L,金属杆甲、乙的阻值相同,质量均为m,甲杆在磁场区域的上边界ab处,乙杆在甲杆上方与甲相距L处,甲、乙两杆都与导轨垂直.静止释放两杆的同时,在甲杆上施加一个垂直于杆平行于导轨的外力F,使甲杆在有磁场的矩形区域内向下做匀加速直线运动,加速度大小为a=2gsin θ,甲离开磁场时撤去F,乙杆进入磁场后恰好做匀速运动,然后离开磁场.
(1)求每根金属杆的电阻R.
(2)从释放金属杆开始计时,求外力F随时间t变化的关系式,并说明F的方向.
(3)若整个过程中,乙金属杆共产生热量Q,求外力F对甲金属杆做的功W.
(5分) 物体的初速度为2m/s,加速度为2m/s2 ,当它的速度增加到6m/s时,所用的时间?
如图(a)所示,A、B为水平放置的平行金属板,板间距离为d(d远小于板的长和宽).在两板之间有一个带负电的质点P.已知若在A、B间加电压U0,则质点P可以静止平衡.现在A、B间加上如图(b)所示的随时间t变化的电压u.在t=0时质点P位于A、B间的中点处且初速度为零.已知质点P能在A、B之间以最大的幅度上下运动而又不与两板相碰,求图(b)中u改变的各时刻t1、t2、t3及tn的表达式.(质点开始从中点上升到最高点,及以后每次从最高点到最低点或从最低点到最高点的过程中,电压只改变一次.)
如图所示,内半径为R的光滑圆轨道竖直放置,长度比2R稍小的轻质杆两端各固定一个可视为质点的小球A和B,把轻杆水平放入圆形轨道内,若mA=2m、mB=m,重力加速度为g,现由静止释放两球使其沿圆轨道内壁滑动,当轻杆到达竖直位置时,求:
(1)A、B两球的速度大小;
(2)A球对轨道的压力;
某球形天体的密度为ρ0,引力常量为G.
(1)证明对环绕密度相同的球形天体表面运行的卫星,运动周期与天体的大小无关.(球的体积公式为,其中R为球半径)
2)若球形天体的半径为R,自转的角速度为,表面周围空间充满厚度
(小于同步卫星距天体表面的高度)、密度ρ=
的均匀介质,试求同步卫星距天体表面的高度.
从地面上以初速度v0="10" m/s竖直向上抛出一质量为m="0.2" kg的球,若运动过程中受到的空气阻力与其速率成正比关系,球运动的速率随时间变化规律如图所示,t1时刻到达最高点,再落回地面,落地时速率为v1="2" m/s,且落地前球已经做匀速运动.(g=10m/s2)求:
(1)球从抛出到落地过程中克服空气阻力所做的功;
(2)球抛出瞬间的加速度大小;