已知以点C (t∈R,t≠0)为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为原点.
(1)求证:△AOB的面积为定值;
(2)设直线2x+y-4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程;
(3)在(2)的条件下,设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标..
已知函数,设方程
有两个实数根
(1)若果,设函数
的对称轴为
,求证:
(2)如果的两个实数根相差2,求实数b的取值范围。
如图,已知过点的抛物线
与过点
的动直线
相交于
、
两点.
(Ⅰ)求直线与直线
的斜率的乘积;
(Ⅱ)若,求证:△
的周长为定值.
如图,在四棱锥中,平面PAD⊥平面ABCD,
,
,E是BD的中点.
(Ⅰ)求证:EC//平面APD;
(Ⅱ)求BP与平面ABCD所成角的正切值;
(Ⅲ)求二面角的正弦值.
已知等差数列数列的前
项和为
,等比数列
的各项均为正数,公比是
,且满足:
.
(Ⅰ)求与
;
(Ⅱ)设,若
满足:
对任意的
恒成立,求
的取值范围.
中,三个内角A、B、C所对的边分别为
、
、
,若
,
.
(Ⅰ)求角的大小;
(Ⅱ)已知的面积为
,求函数
的最大值.