在平面直角坐标系xOy中,已知点A(0,0),B(-2,0),C(-2,1).设k为非零实数,矩阵M=,N=
,点A、B、C在矩阵MN对应的变换下得到点分别为A1、B1、C1,△A1B1C1的面积是△ABC面积的2倍,求k的值.
(本小题满分14分)已知正项数列满足:
,
(1)求通项;
(2)若数列满足
,求数列
的前
项和.
设函数
(1)求函数的周期和单调递增区间;
(2)设A,B,C为ABC的三个内角,若AB=1,
,
,求s1nB的值.
已知函数
(1)若曲线在点
处的切线与直线
平行,求
的值;
(2)求证函数在
上为单调增函数;
(3)设,
,且
,求证:
.
已知椭圆C:+
=1
的离心率为
,左焦点为F(-1,0),
(1)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线L与椭圆C交于M,N两点,若,求直线L的方程;
(2)椭圆C上是否存在三点P,E,G,使得S△OPE=S△OPG=S△OEG=?
已知四棱锥P—GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4
(1)求异面直线GE与PC所成角的余弦值;
(2)若F点是棱PC上一点,且,
,求
的值.