某中学举行了一次“环保知识竞赛”活动,为了了解本次竞赛学生成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n)进行统计,按照,
,
,
,
的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在
,
的数据)
(1)求样本容量n和频率分布直方图中x,y的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取3名同学到市政广场参加环保知识宣传的志愿者活动,设表示所抽取的3名同学中得分在
的学生个数,求
的分布列及其数学期望
已知函数.
(Ⅰ)当时,求曲线
在点
处的切线方程;
(Ⅱ)当时,讨论
的单调性.
已知函数(
)
(1)若,求
在
上的最小值和最大值;
(2)如果对
恒成立,求实数
的取值范围
(本小题满分13分)
已知椭圆E的中心在坐标原点,焦点在x轴上,离心率为,且椭圆E上一点到两个焦点距离之和为4;
是过点P(0,2)且互相垂直的两条直线,
交E于A,B两点,
交E交C,D两点,AB,CD的中点分别为M,N。
(1)求椭圆E的方程;
(2)求k的取值范围;
(3)求证直线OM与直线ON的斜率乘积为定值(O为坐标原点)
(本小题满分13分)
已知函数为自然对数的底数,
(1)求的单调区间,若
有最值,请求出最值;
(2)当图象的一个公共点坐标,并求它们在该公共点处的切线方程。
(本小题满分13分)
在数列。
(1)求证:数列是等差数列,并求数列
的通项公式;
(2)设