(拓展深化)如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α.且DM交AC于F,ME交BC于G,
(1)写出图中三对相似三角形,并证明其中的一对;
(2)连接FG,如果α=45°,AB=4,AF=3,求FG的长.
(本小题满分14分)已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足
点P是线段F1Q与该椭圆的交点,
点T在线段F2Q上,并且满足
(1)设为点P的横坐标,证明
;
(2)求点T的轨迹C的方程;
(3)试问:在点T的轨迹C上,是否存在点M,使△F1MF2的面积S=若存在,求∠F1MF2的正切值;若不存在,请说明理由.
(本小题满分14分)如图,在四棱锥P—ABCD中,PD底面ABCD,底面ABCD是正方形,PD=DC,E、F分别为AB、PB的中点。
(1)求证:EFCD;
(2)求DB与平面DEF所成角的正弦值;
(3)在平面PAD内求一点G,使GF平面PCB,并
证明你的结论。
(本小题满分13分)运货卡车以每小时x千米的速度匀速行驶130千米(50≤x≤100)
(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+)升,
司机的工资是每小时14元.
(1)求这次行车总费用y关于x的表达式;
(2)当x为何值时,这次行车的总费用最低,并求出最低费用的值.
(本小题满分13分)在△ABC中,a、b、c分别是角A、B、C的对边,且,
(1)求角B的大小;
(2)若最大边的边长为
,且
,求最小边长.
(本小题满分13分)已知,命题
“函数
在
上单调递减”,
命题“关于
的不等式
对一切的
恒成立”,若
为假命题,
为真命题,求实数
的取值范围.