设函数f(x)=a为常数且a∈(0,1).(1)当a=时,求f; (2)若x0满足f[f(x0)]=x0,但f(x0)≠x0,则称x0为f(x)的二阶周期点.证明函数f(x)有且仅有两个二阶周期点,并求二阶周期点x1,x2;(3)对于(2)中的x1,x2,设A(x1,f[f(x1)]),B(x2,f[f(x2)]),C(a2,0),记△ABC的面积为S(a),求S(a)在区间[,]上的最大值和最小值.
如图,O是正方形ABCD的中心,PO底面ABCD,E是PC的中点. 求证:⑴PA∥平面BDE; ⑵平面PAC 平面BDE.
设二次函数,已知不论为何实数恒有. (1)求证:; (2)求证:; (3)若函数的最大值为8,求的值.
已知,,且. (1)求的最值; (2)是否存在实数的值,使
已知函数,. (1)设是函数图像的一条对称轴,求的值; (2)求函数的单调递增区间.
设,是两个相互垂直的单位向量,且,. (1)若,求的值; (2)若,求的值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号