游客
题文

为了调查某大学学生在某天上网的时间,随机对100名男生和100名女生进行了不记名的问卷调查.得到了如下的统计结果:
表1:男生上网时间与频数分布表

上网时间(分钟)
[30,40)
[40,50)
[50,60)
[60,70)
[70,80]
人数
5
25
30
25
15

表2:女生上网时间与频数分布表

上网时间(分钟)
[30,40)
[40,50)
[50,60)
[60,70)
[70,80]
人数
10
20
40
20
10

(1)从这100名男生中任意选出3人,求其中恰有1人上网时间少于60分钟的概率;
(2)完成下面的2×2列联表,并回答能否有90%的把握认为“大学生上网时间与性别有关”?

 
上网时间少于60分钟
上网时间不少于60分钟
合计
男生
 
 
 
女生
 
 
 
合计
 
 
 

附:K2

P(K2≥k0)
0.100
0.050
0.025
0.010
0.005
k0
2.706
3.841
5.024
6.635
7.879
科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

抛掷甲,乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记底面上所得的数字分别为x,y.记表示的整数部分,如:,设为随机变量,
(Ⅰ)求概率
(Ⅱ)求的分布列,并求其数学期望

在极坐标系中,直线的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,曲线的参数方程为为参数),求直线与曲线的交点P的直角坐标.

已知矩阵A=,若矩阵A属于特征值6的一个特征向量为α1=,属于特征值1的一个特征向
量为α2=.求矩阵A,并写出A的逆矩阵.

已知数列为等差数列,的前和为,数列为等
比数列,且对任意的恒成立.
(Ⅰ)求数列的通项公式;
(Ⅱ)是否存在非零整数,使不等式对一切都成立?若存在,求出的值;若不存在,说明理由.
(Ⅲ)各项均为正整数的无穷等差数列,满足,且存在正整数k,使成等比数列,若数列的公差为d,求d的所有可能取值之和.

设函数
(Ⅰ)若,函数的值域为,求函数的零点;
(Ⅱ)若
(1)对任意的,恒成立, 求实数的最小值;
(2)令,若存在使得,求实数的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号