在某次数学考试中,抽查了1000名学生的成绩,得到频率分布直方图如图所示,规定85分及其以上为优秀.
(1)下表是这次抽查成绩的频数分布表,试求正整数、
的值;
区间 |
[75,80) |
[80,85) |
[85,90) |
[90,95) |
[95,100] |
人数 |
50 |
a |
350 |
300 |
b |
(2)现在要用分层抽样的方法从这1000人中抽取40人的成绩进行分析,求抽取成绩为优秀的学生人数;
(3)在根据(2)抽取的40名学生中,要随机选取2名学生参加座谈会,记其中成绩为优秀的人数为X,求X的分布列与数学期望(即均值).
(本小题满分14分)已知函数的导函数的图象关于直线
对称。
(1)求b的值;(2)若函数无极值求c的取值范围;(3)若
在
处取得极小值,记此极小值为
的定义域和值域。
(本小题满分12分)已知椭圆的长轴长为4。(1)若以原点为圆心、椭圆短半轴为半径的圆与直线
相切,求椭圆焦点坐标;(2)若点P是椭圆C上的任意一点,过原点的直线L与椭圆相交于M,N两点,记直线PM,PN的斜率分别为
,当
时,求椭圆的方程。
(本小题满分12分)将一个质地均匀的正方体(六个面上分别标有数字0,1,2,3,4,5)和一个正四面体(四个面分别标有数字1,2,3,4)同时抛掷1次,规定“正方体向上的面上的数字为a,正四面体的三个侧面上的数字之和为b”。设复数为(1)若集合
,用列举法表示集合A;(2)求事件“复数在复平面内对应的点
”的概率。
(本小题满分12分)如图:已知正方体ABCD—A1B1C1D1,过BD1的平面分别交棱AA1和棱CC1于E、F两点。(1)求证:A1E=CF;(2)若E、F分别是棱AA1和棱CC1的中点,求证:平面EBFD1⊥平面BB1D1。
(本小题满分12分)已知函数,且
,又知函数
(1)求
的解析式;
(2)若将的图象向右平移
个单位得到
的图象,求
的单调递增区间。