已知各项均为正数的数列满足
, 且
,其中
.
(1) 求数列的通项公式;
(2) 设数列满足
,是否存在正整数
,使得
成等比数列?若存在,求出所有的
的值;若不存在,请说明理由。
(3) 令,记数列
的前
项和为
,其中
,证明:
。
(本小题满分12分).
已知函数在
上是减函数,在
上是增函数,函数
在
上有三个零点,且1是其中一个零点.
(1)求的值; (2)求
的取值范围;
(本小题满分12分)如图,一简单组合体的一个面ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC
平面ABC.
(1)证明:平面ACD平面
;
(2)若,
,
,试求该简单组合体的体积V.
(本小题满分12分)
某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:每一组;第二组
……第五组
.下图是按上述分组方法得到的频率分布直方图.
(I)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(II)设、
表示该班某两位同学的百米测试成绩,且已知
.
求事件“”的概率.
(本小题满分12分)
已知的三个内角A、B、C所对的边分别为
,向量
,且
.
(1)求角A的大小;(2)若,试判断
取得最大值时
形状.
如图,已知椭圆上两定点
,直线
与椭圆相交于A,B两点(异于P,Q两点)
(1)求证:为定值;
(2)当时,求A、P、B、Q四点围成的四边形面积的最大值。