已知椭圆的离心率为,短轴一个端点到右焦点的距离为.(1)求椭圆的方程;(2)设不与坐标轴平行的直线与椭圆交于两点,坐标原点到直线的距离为,求面积的最大值.
在平面直角坐标系中,已知点,动点在轴上的正射影为点,且满足直线. (Ⅰ)求动点M的轨迹C的方程; (Ⅱ)当时,求直线的方程.
已知函数. (Ⅰ)求函数的单调区间; (Ⅱ)记函数的最小值为,求证:.
已知椭圆:经过点,. (Ⅰ)求椭圆的方程; (Ⅱ)设椭圆的左、右焦点分别为,过点的直线交椭圆于两点,求面积的最大值.
已知抛物线的焦点为,过点的直线交抛物线于点,. (Ⅰ)若(点在第一象限),求直线的方程; (Ⅱ)求证:为定值(点为坐标原点).
已知函数,且是函数的一个极小值点. (Ⅰ)求实数的值; (Ⅱ)求在区间上的最大值和最小值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号