已知A、B分别是椭圆的左右顶点,右焦点与抛物线
的焦点F重合.
(1)求椭圆C的方程;
(2)已知点P是椭圆C上异于A、B的动点,直线l过点A且垂直于x轴,若过F作直线FQ垂直于AP,并交直线l于点Q,证明:Q、P、B三点共线.
已知四棱锥P—ABCD及其三视图如下图所示,E是侧棱PC上的动点。
(1)求四棱锥P—ABCD的体积;
(2)不论点E在何位置,是否都有BDAE?试证明你的结论;
(3)若点E为PC的中点,求二面角D—AE—B的大小。
如图,在四棱锥中,
底面
,
,点E在线段AD上,且CE//AB。
(1)求证:CEPAD;
(2)若,AD=3,CD=
,
,求四棱锥
的体积。
已知为坐标原点,
,
(
,
是常数),若
.
(1)求关于
的函数关系式
;
(2)若的最大值为
,求
的值;
(3)利用(2)的结论,用“五点法”作出函数在长度为一个周期的闭区间上的简图,并指出函数
的单调区间
若函数f(x)=sin2ax-sinaxcosax(a>0)的图象与直线y=m相切,相邻切点之间的距离为
.
(1)求m和a的值;
(2)若点A(x0,y0)是y=f(x)图象的对称中心,且x0∈,求点A的坐标.
若a,b是两个不共线的非零向量,t∈R.
(1)若a,b起点相同,t为何值时,a,tb,(a+b)三向量的终点在一直线上?
(2)若|a|=|b|且a与b夹角为60°,t为何值时,|a-tb|的值最小?