已知各项均为正数的等比数列{an}的首项a1=2,Sn为其前n项和,若5S1,S3,3S2成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=log2an,cn=,记数列{cn}的前n项和Tn.若对n∈N*,Tn≤k(n+4)恒成立,求实数k的取值范围.
从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则试验结束.
(Ⅰ)求第一次试验恰摸到一个红球和一个白球概率;
(Ⅱ)记试验次数为,求
的分布列及数学期望
.
已知分别是
的三个内角
的对边,
.
(Ⅰ)求角的大小;
(Ⅱ)求函数的值域.
已知二次函数为常数,且
)满足条件:
,且方程
有两个相等的实数根.
(1)求的解析式;
(2)求函数在区间上的最大值和最小值;
(3)是否存在实数使
的定义域和值域分别为
和
,如果存在,求出
的值,如不存在,请说明理由.
已知函数
(1)它是奇函数还是偶函数?并给出证明.
(2)它的图象具有怎样的对称性?
(3)它在上是增函数还是减函数?并用定义证明.
已知集合A={x| }, B="{x|"
} 求
;