如图是某三棱柱被削去一个底面后的直观图、侧(左)视图与俯视图.已知CF=2AD,侧视图是边长为2的等边三角形,俯视图是直角梯形,有关数据如图所示.求该几何体的体积.
(本小题满分12分)
设函数f (x)=ln(x+a)+x2.
(Ⅰ)若当x=1时,f (x)取得极值,求a的值,并讨论f (x)的单调性;
(Ⅱ)若f (x)存在极值,求a的取值范围,并证明所有极值之和大于ln.
(本小题满分12分)
设数列
为等差数列,且
,
,数列
的前
项和为
,
且
;
(Ⅰ)求数列
,
的通项公式;
(Ⅱ)若
,
为数列
的前
项和. 求证:
.
(本小题满分12分)
如图,在正三棱柱
.
(I)若
,求点
到平面
的距离;

(Ⅱ)当
为何值时,二面角
的正弦值为
?
(本小题满分12分)
将如下6个函数:
,分别写在6张小卡片上,放入盒中.
(Ⅰ)现从盒子中任取2张卡片,将卡片上的函数相加得到一个新函数,求所得函数是偶函数的概率;
(Ⅱ)现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有奇函数卡片则停止抽取,否则继续进行,求抽取次数
的分布列和数学期望.
(本小题满分10分)
锐角三角形ABC的三内角A、B、C所对边的长分别为
,设向量
,且
(Ⅰ)求角B的大小;
(Ⅱ)若
,求
的取值范围.