游客
题文

有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,∠FDE=90°,DF=4,DE=4,将这副直角三角板按如图(1)所示位置摆放,点B与点F重合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.

(1)如图(2),当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC=     度;

(2)如图(3),在三角板DEF运动过程中,当EF经过点C时,求FC的长;

(3)在三角板DEF运动过程中,当D在BA的延长线上时,设BF=x,两块三角板重迭部分的面积为y.求y与x的函数关系式,并求出对应的x取值范围.

科目 数学   题型 解答题   难度 较难
知识点: 相似多边形的性质
登录免费查看答案和解析
相关试题

因式分解:
(1)x3-4x;(2)(x-1)(x-4)-10.

如图,EF∥AD,∠1=∠2,∠BAC=80°,将求∠AGD的过程填写完整.
∵EF//AD,
∴∠2=
又∵∠1=∠2,
∴∠1=∠3(
∴AB//
∴∠BAC+=180°(
∵∠BAC=80°,
∴∠AGD=

解方程组(1)(2)

计算:
(1);(2)

如图1,已知正方形ABCD,把一个直角与正方形叠合,使直角顶点与一重合,当直角的一边与BC相交于E点,另一边与CD的延长线相交于F点时.
(1)证明:BE=DF;
(2)如图2,作∠EAF的平分线交CD于G点,连接EG.证明:BE+DG=EG;
(3)如图3,将图1中的“直角”改为“∠EAF=45°”,当∠EAF的一边与BC的延长线相交于E点,另一边与CD的延长线相交于F点,连接EF.线段BE,DF和EF之间有怎样的数量关系?并加以证明.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号