已知是等差数列,首项,前项和为.令,的前项和.数列是公比为的等比数列,前项和为,且,.(1)求数列、的通项公式;(2)证明:.
已知函数在处有极小值-1,求的单调区间.
求由曲线y=,y=2-x,y=-x围成图形的面积.
已知函数对一切,都有,且时,,。 (1)求证:是奇函数。 (2)判断的单调性,并说明理由。 (3)求在上的最大值和最小值。
设为奇函数,为常数。 (1)求的值; (2)证明在区间(1,+∞)内单调递增; (3)若对于区间[3,4]上的每一个的值,不等式恒成立,求实数的取值范围。
已知函数在区间[0,1]上的最大值为3,求实数a的值。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号